SHARING OUR INTELLECTUAL TRACES

Narrative Reflections from Administrators of Professional, Technical and Scientific Communication Programs

editors
Tracy Bridgeford | Karla Saari Kitalong | Bill Williamson

Baywood Publishing Company
Amityville New York
SHARING OUR INTELLECTUAL TRACES
Narrative Reflections from Administrators of Professional, Technical, and Scientific Communication Programs

Tracy Bridgeford
University of Nebraska at Omaha

Karla Saari Kitalong
Michigan Technological University

Bill Williamson
Saginaw Valley State University

Baywood’s Technical Communications Series
Series Editor: Charles H. Sides

Baywood Publishing Company, Inc.
AMITYVILLE, NEW YORK
Table of Contents

Foreword: Understanding the Power of Narrative in Shaping a Field
Kirk St.Amant

CHAPTER 1. Introduction: We Are the Stories We Tell
Tracy Bridgeford, Karla Saari Kitalong, and Bill Williamson

CHAPTER 2. Tracing the Intellectual Trajectories of Professional/Technical/Scientific Communication: A Roundtable Perspective
Deborah Andrews, Stephen A. Bernhardt, Kelli Cargile Cook, Jeff Grabill, Bruce Maylath, Dan Riordan, and Stuart S. Selber

CHAPTER 3. Program Assessment: A Passion and Palimpsest
Nancy W. Coppola

CHAPTER 4. Establishing an Outcomes Statement for Technical Communication
K. Alex Ilyasova and Tracy Bridgeford

CHAPTER 5. A Tale of Trust and *Techne*: Building Relationships and Building Programs
James M. Dubinsky

CHAPTER 6. Leaders Becoming Transformed
Meg Morgan

CHAPTER 7. The Challenges of Offering a Technical Writing Program in a 2-Year College
Ritu Raju

CHAPTER 8. Globalizing Technical Communication Programs: A Diachronic Perspective
Laurence José
CHAPTER 9. Users, Not Solutions, First: Problem-Solving for Program Administrators ... 133
M. Ann Brady and Karla Saari Kitalong

CHAPTER 10. Intersections Between a Technical Communication Program and an Engineering Department .. 149
Julie Dyke Ford

CHAPTER 11. Expertise in Professional Communication as a Catalyst of WAC/WID Administration Success 161
Pavel Zemliansky

CHAPTER 12: Curricular Challenges of Emphasis Degrees in Technical and Professional Communication 179
Lisa Meloncon

CHAPTER 13: Afterword: 40 Years of Stories from Technical Communication Program Administrators 201
Karla Saari Kitalong

Contributors ... 209
Index ... 215
It could be said that humans are a narrative species. That is, of all of the creatures in nature, humans seem to be unique in creating stories in order to make meaning out of their experiences, to understand events, or to share their interpretations with others. In fact, one could claim humans alone use narratives to pass knowledge on from generation to generation. After all, the narrative form of the fairy tale is one of the first mechanisms we use to teach children what constitutes “good” and “bad” behavior as well as what rewards are bestowed upon the good versus what punishments await the bad.

Narratives are also very powerful rhetorical devices. By creating a context for understanding events, the stories we tell and how we tell them shape our understandings of what took place at various points in time. The descriptors we use when telling stories, for example, allow us to control how an audience perceives the actions taken by individuals in relation to different events. Similarly, the way in which a narrative unfolds allows the storyteller to control the sequence in which events took place and to create a sense of causality in terms of what prior actions resulted in later effects. In these ways, truly effective stories that recount past actions can actually eclipse the facts of the events themselves. And such processes can spread until the legend of what took place becomes reality in the minds of a greater group of individuals. At that point, the perspective conveyed by the narrative constitutes what is accepted as “true” by the related group. As the 1962 film The Man Who Shot Liberty Va lance puts it, “When the legend becomes the truth, print the legend.”

Perhaps one of the most interesting aspects of the use of narrative as a rhetorical device is how stories—or an appeal to narrative, if you will—can create conversation among individuals. Phrases such as “Do I have a story for you.” or “I have an interesting story about that.” or “Would you like to hear a
story about how . . .?” inevitably lead us to invite the speaker to share that story with us. Moreover, such devices also often prompt us to share our own stories related to that topic or theme. Through such narrative-based conversations, groups of individuals often begin to create a greater, shared story that can become a framework for mutual understanding and for future, common interaction. In this way, one could say that by creating such commonalities, narratives often serve as a foundation for culture.

At its core, culture is about commonality. That is, the members of a given culture generally share a common set of beliefs, values, attitudes, and behaviors that bind them together. Such commonalities are often connected to and conveyed through a language that helps the members of a culture discuss what they consider important to that culture. Within this context, narratives can be particularly powerful.

In many cases, cultures have a creation story—or narrative—that states how that culture came into being. Such narratives often define who the members of that culture are, what values the members of that culture hold dear, and what behaviors establish a foundation for evaluating right and wrong among the members of that culture. Similarly, the legends shared by the members of a culture further cement bonds of commonality by providing examples of what values and behaviors are considered “good” within that culture (e.g., the actions of individuals labeled as “heroes”) and what behaviors are considered “bad” within the culture (e.g., the actions of persons identified as “villains”). These legends also provide the members of a culture with a lens through which they can view, interpret, and understand historical events based on how the members of that culture (and those from outside of the culture) are depicted in the recounting of past activities. Thus, narratives become an important, if not a central, way through which history is presented to and remembered by a greater group.

As with any culture, disciplines are also deeply connected to narratives. In such cases, the creation narrative of the culture often becomes stories about the formation and early history of a given field, the development of a particular program, or the recounting of events that shaped both. Similarly, narratives help the members of a disciplinary culture develop the vocabulary of that culture through stories of what was successful and what was not. And narratives also serve as effective tools for engendering discussion across a given field. Consider, for example, how many of us use conferences, listservs, or other professional forums to present stories of our experiences as well as invite others to share their own stories about what took place at their schools or within their programs. Again, through such narrative-based activities, commonality across a group can emerge, and disciplinewide mechanisms for understanding and addressing events can develop. For these reasons, all disciplines need to collect and to share their narratives.
As a relatively new and growing discipline, technical and scientific communication abounds with important and interesting narratives that have a great deal to offer members of the field. These range from stories of the individual faculty member/program administrator navigating her or his way through a greater department (usually an English department) to persons recounting how discipline-specific programs emerged out of various concentrations, degrees, or departments to become independent academic units/entities. Such narratives provide a rich set of experiences others can use as heuristics for contextualizing their own experiences or as approaches for addressing a wide range of events. Moreover, when collected in one place, this aggregation of narratives can serve as a critical resource and reference for other members of the field. I believe this edited collection is such a text.

Although it is impossible to collect and to share every narrative within a given field, works that bring together various narratives representing common themes regularly encountered within a field can provide a framework for understanding and addressing other, similar events. The editors of this collection have, in turn, assembled a group of authors who represent a broad range of experiences that underlie many of the core issues at play in our field today. These stories cover topics such as approaches to understanding assessment and developing educational outcomes. They also present examples of transformational experiences that have led to new ideas to and approaches for leadership as well as models and methods for interacting with the greater communities of which we are all a part. In so doing, the contributors share stories of obstacles they have encountered and approaches they have used to address forces that can affect individual members of our field as well as overall programs in our discipline.

Of equal importance is the range of individuals who share their stories in this text. These authors include faculty who have been actively involved in the field for 30+ years as well as newly minted PhDs. They represent both persons who have worked at numerous universities over the course of their careers and individuals who have dedicated a lifetime of experience to one institution. These contributors also provide perspectives that span the spectrum of higher education from research-intensive universities with PhD programs to more teaching-oriented institutions that focus exclusively on undergraduate education and service learning. Included in this mix are persons who have experiences related to on-site and online courses and degrees as well as representatives from key professional organizations such as the Council for Programs in Technical and Scientific Communication (CPTSC), the Society for Technical Communication (STC), the IEEE Professional Communication Society (IEEE PCS), the Association of Teachers of Technical Writing (ATTW), and many others. Thus, while no collection on this topic can ever be truly comprehensive in the stories it includes, this anthology represents an amazingly broad cross section of our field and the kinds of situations and concerns commonly encountered by its members. The result is a powerful framework and a related set
of heuristics from which we can begin to understand those forces and factors that bind us together as a discipline.

It could be said that the story of every major undertaking begins with a single action, or step. In terms of collecting and sharing the narratives of our field, this volume represents such a first step. And, as with all narratives, this text also stands as an invitation for others to collect and share both their own stories and the narratives of others so the greater tale of the field might be explored in meaningful and important ways. For this reason, I encourage readers to view this text as an opportunity to engage in the greater narrative of the field and to collect and share experiences with others. After all, each of us has a story to tell.
Contributors

Deborah C. Andrews is professor of English and directs the Center for Material Culture Studies at the University of Delaware. In the English department, she teaches courses in technical editing and rhetoric, in interpreting objects and sites for public understanding, and in American literature from 1865 to 1945. Through her minor in material culture studies, she supervises internships, coordinates a yearly colloquium series, and teaches a seminar in strategies for researching and writing about the relationship between people and their things. She has published several articles, book chapters, and texts on professional communication, including Technical Communication in the Global Community and, most recently, Management Communication: A Guide. A researcher, consultant, and speaker on many aspects of professional communication, especially in an international context, she is the former editor of Business Communication Quarterly.

Stephen A. Bernhardt holds the Andrew B. Kirkpatrick Jr. Chair in Writing at the University of Delaware, from which position he promotes strong writing and communication skills across the university. He is the author of Writer’s Help, a new, web-based reference handbook from Bedford/St. Martin’s. He teaches courses in scientific and technical communication, first-year composition, computers and writing, and grammar and style.

M. Ann Brady is associate professor of rhetoric and technical communication and director of the Scientific and Technical Communication Program at Michigan Technological University. Working at the intersections of feminist theory, rhetoric, technology studies, and interdisciplinary studies, she has published in the Journal of Business and Technical Communication, Technical Communication Quarterly, Women’s Studies, Rhetoric Review, and Programmatic Perspectives.

Tracy Bridgeford is an associate professor of Technical Communication at the University of Nebraska at Omaha where she also directs the Technical Communication program and the English master's program. She contributed a chapter to Resources in Technical Communication: Outcomes and Approaches, Teaching Writing with Computers: An Introduction, and Innovative Approaches to Teaching Technical Communication, which she also co-edited. She has also
Kelli Cargile Cook is associate professor of technical communication and rhetoric at Texas Tech University. She has served as president of both the Association of Teachers of Technical Writing (2009–2011) and the Council for Programs in Technical and Scientific Communication (2006–2008). She served as undergraduate and doctoral program director at Utah State. She currently coordinates and directs service course instruction in technical communication at Texas Tech. Her research focuses on online education in technical communication, but she also studies technical communication pedagogy, program development, and program assessment.

Nancy W. Coppola is founding director of the Master of Science Program in Professional and Technical Communication at New Jersey Institute of Technology. Her publications have twice won the best research paper award from the IEEE Professional Communication Society and the APEX 2012 award for publication excellence. Her teaching has been recognized by the STC Jay R. Gould Award for excellence in teaching technical communication. She is a fellow of the STC and senior member of IEEE. Her research and publication focuses on professionalization issues for technical communication, including a body of knowledge and programmatic issues including program assessment.

James M. (Jim) Dubinsky is director of undergraduate studies in the Department of English and associate professor of rhetoric and writing at Virginia Tech. From 1998 until 2007 he was the founding director of the Professional Writing Program in the Department of English, and from 2008 to 2011 he served as the founding director of the Virginia Tech Center for Student Engagement and Community Partnerships, now VT-Engage. In addition, he has served as an officer on the Council for Programs in Technical and Scientific Communication and ABC, and he is currently serving as ABC’s executive director. Dubinsky has received college-level awards for teaching and outreach and two university awards for the scholarship of teaching and learning. His research interests include the scholarship of engagement, the scholarship of teaching, and the rhetoric of citizenship.

Julie Dyke Ford is associate professor of mechanical engineering and technical communication at New Mexico Tech. She is an award-winning teacher with more than 15 years of experience teaching technical communication and working with STEM faculty to promote writing across the curriculum. Her research interests include technical communication pedagogy, communication within engineering, and knowledge transfer. Her work has been published in the Journal of Technical Writing and Communication, Technical Communication Quarterly, Technical Communication, the Journal of Engineering Education, the Journal of STEM Education, IEEE Transactions on Professional Communication, and Composition Forum. She has held leadership roles and served as a long-standing
member of the Association of Teachers of Technical Writing and the Council for Programs in Technical and Scientific Communication.

Jeff Grabill is professor of rhetoric and professional writing and chair of the Department of Writing, Rhetoric, and American Cultures at Michigan State University. He is a senior researcher with WIDE Research (Writing in Digital Environments). He is also a cofounder of Drawbridge LLC, an educational technology company. As a researcher, Grabill studies how digital writing is associated with citizenship, learning, and knowledge work practices. He has published two books on community literacy and articles in journals such as College Composition and Communication, Technical Communication Quarterly, Computers and Composition, and English Education.

K. Alex Ilyasova is assistant professor and director of the Professional and Technical Writing Program at the University of Colorado at Colorado Springs. Her research interests include writing program administration, with a focus on technical communication programs, and identity and literacy studies. She has most recently published an editorial in Programmatic Perspectives (March 2012), “An Editorial Introduction of a Curriculum Showcase.” Additionally, she has a forthcoming co-authored book chapter on the experience of working as the lone faculty/administrator of professional, technical, and scientific communication programs. Her previous publications include book chapters on this issue of visibility and identity in LGBT studies and queer business practices.

Laurence José works as assistant professor of writing at Grand Valley State University, Michigan. She earned her PhD in rhetoric and technical communication from Michigan Technological University in 2010. She also holds a Diploma of Advanced Studies with an emphasis in linguistics from the University Marc Bloch (France). Her teaching experience includes courses in technical communication, professional writing, business communication, composition, French, and linguistics. Her latest research explores the meaning of the global context for the disciplinary construction of technical communication. Her other research interests include international and intercultural technical communication, technical communication pedagogy, literacy studies, and linguistics.

Karla Saari Kitalong is an associate professor of Humanities at Michigan Technological University, where she also serves as Director of Composition and the Michigan Technological Multiliteracies Center. Her research interests include visual rhetoric and usability in technical communication, especially concerning new media contexts; multimodal composition pedagogy; writing program administration; and writing in the disciplines.

Bruce Maylath is professor and director of graduate studies in English at North Dakota State University, where he teaches courses in linguistics and technical communication. His current research takes up translation issues in technical communication and has been published in IEEE-Transactions in Professional Communication, the Journal of Business and Technical Communication, and Technical Communication Quarterly, among others. Along with Dale
Sullivan and Russel Hirst, he is the co-editor of *Revisiting the Past through Rhetorics of Memory and Amnesia*.

Lisa Meloncon is associate professor of technical communication at the University of Cincinnati, where she teaches graduate and undergraduate courses. Her research interests examine health communication and the Internet, visual rhetoric, as well as pedagogical practices and programmatic concerns. She has published widely on these topics and is the editor of *Rhetorical AccessAbility: At the Intersection of Technical Communication and Disability Studies*.

Meg Morgan is associate professor of English, working at the University of North Carolina, Charlotte, since fall 1987. From 1994 to 2003 she administered the first-year writing program, and after that coordinated the graduate and undergraduate programs in technical/professional writing. She is a graduate of Purdue University’s Rhetoric and Composition program. She was a recipient of the Bank of America Teaching Excellence Award in 2008, was faculty president from 2006 to 2007, and publishes in the discipline of technical communication practices. She has served on several national and regional committees: the Association of Teachers of Technical Writing Teaching Committee, the Executive Committee of the Carolinas Writing Programs Administrators, and the board of the national Council of Writing Program Administrators. During her time at UNC Charlotte, she has taught many different types of classes, mostly graduate and undergraduate courses in the Technical/Professional Writing program and in Rhetoric and Composition for English MA students. She has consulted on writing and writing programs nationally and internationally. Although currently semi-retired, Morgan is still teaching and serving on several MA and PhD committees.

Dan Riordan began teaching Technical Writing at the University of Wisconsin-Stout in 1970. During his career he taught a wide range of Technical Communication courses from Writing Manuals to Rhetoric of Technology. During his time at UW-Stout he assisted in developing a Technical Writing minor, Technical Communication B.S. and M.S. During the last 10 years of his time at UW-Stout he served as the Director of UW-Stout’s Nakatani Teaching and Learning Center, a leading faculty development site. Riordan was recognized with a number of awards, including the Society for Technical Communication’s Jay Gould Award for Excellence in teaching, Associate Fellow of STC, ATTW Fellow and CPTSC Distinguished Service Award. Riordan is currently revising his textbook, *Technical Report Writing Today* (Cengage/Wadsworth).

Ritu Raju is professor in the English Department at Houston Community College. She received her PhD in technical communication and rhetoric from Texas Tech University. Her work has been published in leading professional journals, and she presents at national and international conferences. She is actively engaged in several professional bodies, including the Association of Teachers of Technical Writing and the Council for Programs in Technical and Scientific Communication. Her research interests include intercultural communication, outsourcing/offshoring, cultural usability, social networking and
its use in pedagogy, New Media tools in teaching composition and distance education, and writing center theory.

Stuart S. Selber is associate professor of English at Penn State, where he works in the rhetoric program. He is a past president of the Association of Teachers of Technical Writing and the Council for Programs in Technical and Scientific Communication, and a past chair of the 4Cs Committee on Technical Communication. His books include *Multiliteracies for a Digital Age* (Southern Illinois University Press), *Central Works in Technical Communication* (Oxford University Press), *Rhetorics and Technologies: New Directions in Writing and Communication* (University of South Carolina Press), and *Solving Problems in Technical Communication* (University of Chicago Press).

Kirk St. Amant is professor of technical and professional communication and of international studies at East Carolina University.

Bill Williamson is a professor of Professional and Technical Writing at Saginaw Valley State University (SVSU). He has administered undergraduate technical writing programs at two universities—SVSU and the University of Northern Iowa. He has served as co-editor for Programmatic Perspectives, information officer, and president for the Council for Program in Technical and Scientific Communication. His research interests include program administration; technical communication curriculum design, and technical communication pedagogy.

Pavel Zemliansky is associate professor in the Department of Writing and Rhetoric at the University of Central Florida. He is also the director of UCF’s Writing Across the Curriculum (WAC) program. He teaches courses in professional writing, rhetoric, and composition. As WAC director, he develops and coordinates training programs and consultations for faculty across the disciplines, assisting them in the development of writing instruction frameworks and methods appropriate for their fields. His research focuses on professional communication in international contexts and writing across the curriculum.
Index

AACU (Association of American Colleges and Universities), 13–14
Academia/workplace divide, 108, 203
Academic advising, 156
Academic language, 91–92
Accreditation Board for Engineering and Technology (ABET), 153–155
ADE Bulletin (Association of Departments of English), 3, 202, 206
Administrative professionals
 first-person narratives by, 4–7
 intellectual and institutional challenges faced by, 1–2
 leadership, transactional and transformative, 99–104
 lone rangers, 69–70
 training for, 4
Adobe’s Creative Suite, 190
Agency and change in institutional settings, 20–21
Alfred P. Sloan Foundation, 43
Allen, Jo, 41, 45, 50, 56, 64–66
Aller, B., 155
Alred, Gerald, 46
Amant, Kirk St., v, 201
Anderson, Paul, 181–184
Andrews, Deborah, 5, 11, 123, 202–204
Anson, Chris, 43, 65, 168
Anti-instrumental approach to technical communication, 129–130
Argyris, Chris, 93
Aristotle, 82n2–3; 84, 91, 93–94, 130
Artemeva, N., 164
Articulation agreements between colleges, 112–113
Assessment. See Program assessment
Assessment in Technical and Professional Communication, 41, 50
Association of Departments of English (ADE), 3, 202, 206
ATTW (Association of Teachers of Technical Writing), vii, 25, 34
 outcomes statement, 74
 web site redesign, 171–172
Barker, Thomas, 48
Bean, John, 169
Belanoff, Pat, 42
Bernhardt, Stephen A., 5, 11, 46, 202
Berthoff, A. E., 93
Binger, Carl, 81
Blythe, Stuart, 154
Body of Knowledge initiative, 32
Bosley, Deborah, 102
Bowling Green State University, 124
Boyer, E., 93
Brady, M. Ann, 7, 122, 141–144, 206
Brannon, L., 83
Bransford, J. D., 13
Brelan, Hunter M., 42
Bridgeford, Tracy, 1, 5, 53, 201–202, 206
Broad, Robert, 39, 46
Brodkey, 83n4
Brown, A. L., 13
Bruffee, Kenneth, 41
Budgets and funding, 25–30, 48, 175
 See also Research grants
Business and industry
changes in, 191–192
job market, 30–35
role of professional communicators, 163–164
skills for, 48, 66, 84, 105, 110, 112, 189–190
technical communication and, 107–110, 119, 175
Business writing, 110, 115

Call of Stories, The (Coles), 81, 91
Camp, Roberta, 42
Capstone courses, 14, 69, 84–85, 180, 184
Card sorting, 145
Carliner, Saul, 105
Carnegie Foundation, 69, 162, 180
Carnegie Mellon University, B.S. in Technical Writing and Editing, 179
Carter, Joyce Locke, 48
Carter, M., 43
Carter, M. F., 163
CCLI (Center for Computer-Assisted Language Instruction), Michigan Technological University, 135–146
Brady, M. Ann, 141–144
collaboration among students and, 143–144
Communications, policies and procedures on, 138–139
competition for classroom time, 143
design and media students, 141, 143–144
e-mail, use of, 138–139
emergent problem-solving, 135, 138–139, 141–142
instructional/pedagogical goals, 136–137
interim directors, 142, 144
Kitalong, Karla Saari, 135–140
laptop computers, increased use of, 143–144
operational goals, 137
Scientific and Technical Communication program and, 142–143
Selfe, Cynthia and Richard, 135–136, 139–140, 142
solution-first techniques, 142, 144
students as primary users of space, 140–141
user-centeredness, 136
Certification in technical communication, 32
Chisler-Strater, 87n12
Citizen scientists, 22
Clancey, M. S., 155
Clandinin, D. J., 92
Clemson University, 30
Clustering, 145
Cluster scoring, 42–43
Cocking, R. R., 13
Coles, Robert, 81–83, 91–93
Collaborative writing, 64
College Learning for the New Global Century (AACU), 13–14, 48
Colleges, 2-year, technical writing programs in, 105–116
academic programs, 105–106
articulation agreements with 4-year institutions, 112–113
course designations, 112–113
focus group findings, 108–109
identifying service area needs, 109–110
industry, working relationships with, 107–110
Premier Community College, historical background, 106–107
technical writing as vocational course, 114–115
transfer of credits to 4-year institutions, 110–114
Communications, policies and procedures on, 138–139
Communities of practice (COP), 70–71
Community colleges. See Colleges, 2-year, technical writing programs in Community service, 156
Composition, technical communication as subdiscipline of, 53–54
Computers and Technical Communication (Selber), 3
Coney, M. B., 205
Confessional tales, 93
Conklin, J., 164
Connors, Robert, 192
Consulting, 164–165, 170, 175–176 by researchers, 85–88
Cook, Kelli Cargile, 5, 11, 202
Coppola, Nancy W., 5, 39–40, 206
Corbett, E. P. J., 205
Core competencies, 46, 48–49
Council of Writing Program Administrators (WPA), 53
See also WPA Outcomes Statement
Courses
capstone, 14, 69, 84–85, 180, 184
crossover, 186
service, 89–90, 190–191
specialized, 186
technology, 189
telecourses, 43
vocational, 114–115
CPTSC (Council for Programs in Technical and Scientific Communication), vii, 25
archives of, 202
assessment research, funding for, 48
conference proceedings, 122–124, 192
on globalization, 122–124, 127–128
Graduate Student Diversity Scholarship, 34, 124n6
Guidelines for Program Self Study, 45
leadership of, 11, 35
outcomes statements, 54, 74
Research Grant initiative, 34
research grant program, 121–122
stories, role in annual meetings, 201–202
Creative Commons licensing, 21
Creative problem-solving, 133, 141, 143
Creative writing, 181–182, 184, 202
Creativity, 101–102, 133, 158
Crossover courses, 186
Crow, P., 204–205
Crowd sourcing, 22
Crowley, Sharon, 130n9
Culture, creation stories and narratives in, vi
Cunningham, D. H., 180n1
Curricula
genre-based frameworks, 184
globalization, impact on, 119
integration of computers, 16–17
language components in, 125
role of outcomes in planning, 185–186
Science, Technology Engineering, and Math (STEM), 150
See also Emphasis degrees, curricular challenges of; University of Cincinnati, Rhetoric and Professional Writing (RPW) track
Cushman, E., 18
Dale, Helen, 86, 94
Dautermann, Jennie, 86n11
Davis, Marjorie, 158
Dayton, David, 46
De Anima (Aristotle), 94
Defense Activity for Non-Traditional Education Support (DANTES) Subject Standardized Test of Technical Writing, 40
Designing Globally Networked Learning Environments (Starke-Meyerring), 24, 119
DeVoss, D. N., 18–19
Disciplines
creation narratives of, vi–viii
differences in writing in, 170–171
See also WAC/WID (writing across the curriculum/writing in the disciplines)
Diversity, 34, 124, 124n6
See also Globalization
Dobrin, D., 57
Doctoral student training, 32–35, 53–54
Documentation/user assistance, 30–31
online, 182, 192
Educational Testing Service (ETS), 40
Ehn, Pelle, 134
Elbow, Peter, 42
Electronic Information Exchange System (EIES), 43
Elliot, Norbert, 39, 41–42, 45
E-mail, use of, 138–139
Emergent problem-solving, 135, 138–139, 141–142, 145
Emphasis degrees, curricular challenges of capstone courses, 184
contingent faculty, 190–191
creating or updating of, questions to consider, 197–198
crossover courses, 186
curriculum, creating a sustainable, 185–187
defined, 179
English departments, location in, 181, 187–188
faculty preparedness, 191
genre-based curricular frameworks, 184
lab spaces, 190
lessons for program administrators, 185
outcomes, role in planning, 185–186
overview of, 180–182
preprofessional status of technical communicators, 191–192
service courses, 190–191
specialized courses, 186
technological literacy, 189
technology, role of, 188–190
technology courses, 189
See also University of Cincinnati, Rhetoric and Professional Writing (RPW) track
“End of Internationalization?, The” (Redden), 120

Engaging Ideas (Bean), 169
Engineering and technical communication departments, intersections between (New Mexico Tech), 149–158
academic advising, 156
community service, 156
creativity, 158
ergonomics, 155
graduate certificate program, 156–157
grant initiatives on leadership, 155–156
interdisciplinary initiatives, 154–155
internships, 156
liberal arts-based departments, 151
MENG (Mechanical Engineering) students, 153–158
Science, Technology Engineering, and Math (STEM) graduate curricula, 150

England, P., 191

Entrepreneurial activities, funds from, 30
Environmental sustainability, 22
Ergonomics, 155
Ethics, 83–84, 86, 91
globalization and, 129
outcome statements and, 72
Ethnography, 92

Facebook, 172
Faculty Center for Teaching and Learning (FCTL), UCF, 174
Faculty preparedness, 191
Faigley, L., 64
Faris, M., 19
Ferzli, M., 163
First-year composition programs, 53, 173
Florida, Richard, 26
Ford, Julie Dyke, 7, 205–206

Foundations for Teaching Technical Communication: Theory, Practice, and Program Design (Staples & Ornatowski), 3
INDEX / 219

Friedman, T. L., 21
Funding and budgets, 25–30, 48, 175
See also Research grants

Gatley, Ian, 49–50
Gee, J. P., 83n6
Geertz, 83n4
Genre, as term, 72
Genre-based curricular frameworks, 184
Gibbons, J., 94

Globalization
affordances of, identifying, 126–130
anti-instrumental approach to technical communication, 129–130
context, 118–121
CPTSC conferences, proceedings on, 122–124
critical reflection by program administrators, 128–130
diachronic approach, 118, 130
diversity, 124
eras of transformation, 21–22
ethics and, 129
impact on program and curriculum design, 119
international collaborative-learning projects, 24
language components in curricula, 125
overview of, 117–118
professional organizations and, 25
program administrators’ discourse and, 121, 130
program certificates in international technical communications 124–125
referential manifestations, 124–126, 130
research grants, 121–122
sociopolitical ramifications of, 126–127, 129
study abroad programs, 23
technical communication and translation, merging of, 24–25
Globalization 3.0, 21–22
“Global Programs Partnerships in Technical Communication”
(Starke-Meyerring & Duin), 122

Gneccchi, M., 24
Gordon, Jay, 58
Goswami, D., 88
Goswami, Dixie, 119
Grabill, Jeff, 5, 11, 18, 127–129, 202
Graduate programs, 43, 69, 150, 156–157
Great Recession, 2007-2010, 31
Great Reset, The (Florida), 26
Guba, Egon G., 41

Halloran, S. Michael, 204–205
Harner, Sandi, 125, 179–180
Harris, J. G., 180n1
Heilbrun, C., 83n6
Heuristics and narrative, vii–viii
Higher education
accountability and learning outcomes, 48
funding, 25–30
funds from entrepreneurial activities, 30
internationalization in, 120–121
job market, 32–35
professional education, 30
research grants, 28–29, 33–34
student enrollment and demand, 28
Hiltz, Starr Roxanne, 43
Holmes, R., 22
Howe Writing Initiative, 85n9
“How Low-States Writing Assignments Can Help Students Learn and Save Teachers Time” (UCF workshop), 167
How People Learn (Bransford), 13
Huckin, Thomas, 119, 127–129

Humanities
social sciences, university financing and, 26–27
technical disciplines, divide between, 204
Humanities Digital Media Zone (HDMZ), 144–146
Huot, Brian, 39

IEEE Professional Communication Society (IEEE PCS), vii, 25
Ilyasova, K. Alex, 5, 53, 206
“Increasing Student Learning in Large Classes Through Writing” (UCF workshop), 166
Industry. See Business and industry
Information Fluency Program, UCF, 174
Information literacy, 67–68
Instant communication technologies, 24
Institute for International Education, 23
Institute of Scientific and Technical Communicators (ISTC), 25
INTECOM, 25
Intentional learners, 14
Intercultural communication, 123
Interdisciplinary initiatives, 154–155
“Interest,” 87–88
International communication, 123
Internationalization in higher education, 120–121
See also Globalization
International Professional Communication Conference (IPCC), 25
International Society for the Scholarship of Teaching and Learning (ISSOTL), 12
International technical communications, 25, 206
program certificates, 124–125
See also Globalization
Internships, 14, 48, 107, 115, 156, 180, 204
Introduction to English Studies course, 188
Introduction to Literary Criticism course, 188
Iraq, 106

Jones, Robert J., 42
José, Laurence, 6, 117, 122, 206
Journal of Business and Technical Communication (JBTC), 3
issue on writing in the disciplines, 161
Journal of Technical Writing and Communication (JTWC), 3

Katz, S. B., 57
Kennesaw State University, 124
Kilduff, Margaret, 42
Killingsworth, Jimmie, 44, 58
Kimball, Miles, 48
Kitalong, Karla Saari, 1, 7, 135–140, 201, 206
Knights Write, UCF, 173
Knoblauch, C. H., 83

Lab spaces, 30, 190
See also CCLI (Center for Computer-Assisted Language Instruction), Michigan Technological University
Language
academic, 91–92
components in curricula, 125
professional, in outcomes statements, 58
Lanier, C. R., 189
Latterell, Catherine, 152
Lave, Jean, 70–71
Leadership
grant initiatives on, 155–156
transactional and transformative, 99–104
Learning
effectiveness, 45–46
intentional learners, 14
learner-centered teaching, 12–16
science of, 12–14
situated learning, 70–71
social and interactive aspects, 93–94
writing-related student learning outcomes, 168–170, 176
See also Outcomes statement for technical communication, establishment of
INDEX / 221

Learning-to-write assignments, 167
Legitimate peripheral participation (LPP), 70–71
Levitt, Theodore, 117n1
Librarians, 67–68
Likert-scale, 47
Lincoln, Yvonne S., 41
“Linguistic and Cultural Diversity in Scientific and Technical Communication: Designing International Curricula” (Brady & José), 122
LiONiL (Library Instruction Online for Information Literacy), 67
Literature classes, 114–115
Lovitt, Carl, 119
Lower-Division Academic Course Guide Manual, 112
LPP (legitimate peripheral participation), 70–71
Ludwig, Alfred O., 81–82
Lundin, R. W., 19
Lynch, Robert E., 41–42
Lyotard, J. F., 70n9

Maid, Barry, 53, 63, 67–69
Making and production, 58
Maylath, Bruce, 5, 11, 24, 202
McAllister, Ken, 57–58
Meaning, ownership of, 72
Mechanical Engineering (MENG). See Engineering and technical communication departments, intersections between (New Mexico Tech)
“Meeting the Challenges of Globalization: A Framework for Global Literacies in Professional Communication Programs” (Starke-Meyerring), 127
Meloncon, Lisa, 7, 125n8, 179, 191, 205
Melzer, Dan, 171
Mercer University, 158
Metzger, 92
Miami University, 181
Michaels, Sarah, 83–88
Michigan State University (MSU), 18
faculty, grant-seeking abilities of, 33
Michigan Technological University. See CCLI (Center for Computer-Assisted Language Instruction)
Micropolitical actions, valuing of, 20–21
Miller, Carolyn R., 41, 43, 57, 70n9, 129, 182
Miller, T. P., 64
Miller, Thomas, 191
Mirel, B., 133
Mishler, E. G., 83
Moeller, Ryan, 57–58
Montgomery, Mark A., 120n2
Morgan, Meg, 6
Mousten, B., 24
MS PTC Program, 49
Multicultural communication, 123
See also Globalization
Multiple-choice tests, 40–41
Myerhoff, 92

NAFSA: Association of International Editors conference, 120
Nagelhout, E., 115
Narrative
first-person, on administering technical communication programs, 4–7, 201–202
heuristics and, vii–viii
methodology, 81–83, 85, 91–92
as palimpsest, 39–40
use as rhetorical device, v–viii, 93
National Academy of Engineering, 154–155, 158
National Council of Accreditation of Teacher Education (NCATE), 67
National Endowment for the Humanities (NEH), 29
National Leadership Council for Liberal Education and America’s Promise, 48
National Science Foundation (NSF), 29
Navigate, as term, 67–68
New Jersey Basic Skills Placement Test, 41
New Jersey Institute of Technology (NJIT), program assessment, 40–50
Defense Activity for Non-Traditional Education Support (DANTES) Subject Standardized Test of Technical Writing, 40
Educational Testing Service (ETS), 40
graduate program as research site, mid-1990s, 43
mapping institutional values to program outcomes, 2010, 49–50
moving toward community, early 1990s, 41
MS PTC Program Goals and Education Objectives, 49
online teaching, 43–45, 47
program assessment experience, 2004, 46–49
program review audit, 44, 49
program review experience, 2001, 44–46
standardized testing, moving away from, late 1980s, 40–41
Strategic Plan, 49
student ePortfolios, 46–48
student outcomes, matrix of, 46
Newman, John Henry, 81
New Mexico Tech, 149–158
Persuasive Communication, 155
PPOHA grant (Title V Promoting Postbaccalaureate Opportunities for Hispanic Americans), 154, 157
Science, Technology Engineering, and Math (STEM) graduate curricula, 150
Visual Communication, 156
“Noiseless Patient Spider, A” (Whitman), 87
Nonaka, I., 40
North, S., 88
North Carolina State University, 4
Campus Writing and Speaking Program, 168
North Dakota State University, 4
Nugent, Jim, 125–126
Occupational code for Professional, Technical, and Scientific Writing, 31
Occupational Outlook Handbook (Bureau of Labor Statistics), 31
Odell, L., 88
Online teaching, 4, 30, 43–45, 47, 124, 171–172
“Origins of the Outcomes Statement, The” (White), 55
Outcomes distinction between standards and, 60–61
role in curriculum planning, 185–186
Outcomes-based assessment, 48–49, 60–61
Outcomes Book: Debate and Consensus after the WPA Outcomes Statement, The (Maid, Barry), 53
Outcomes statement for technical communication, establishment of audience for, 55, 58
collaborative writing, 64
communities of practice (COP), 70–71
creation of, 53–55
distinction between “outcomes” and “standards,” 60–61
ethics in, 72
genre, as term, 72
librarians, goals of, 67–68
navigate, inclusion of term, 67–68
outcomes-based assessment and, 60–61
ownership of meaning, 72
portfolios, completion, 72–73
professional language in, 58
professional organizations and, 74
revisions to, 64–69, 71–73
stakeholders, 72–73
student populations and, 60
techné as enterprise, 55–59
technology, skills for learning, 63–64
University of Colorado at Colorado Springs (UCCS), 74–76
University of Nebraska at Omaha (UNO), 76–78
viewers, inclusion of term, 68
See also TC-WPA Outcomes Statement
INDEX / 223

Paretti, M., 155
Participant-observers, 85–86
Participatory problem-solving, 134–135, 144–146
Pearsall, T. E., 203–204
Pedagogy
 emerging trends in, 12–16
 learner-centered teaching, 12–16
 socially constructed models of, 42–43
Pennsylvania State University, computing culture, study of, 18
Personal power, 99–100
Persuasive Communication, 155
Phronesis, 82–83, 91, 93
“Political-Ethical Implications of Defining Technical Communication as a Practice” (Sullivan), 129
Polyani, M., 40
Portewig, Tiffany Craft, 46
Portfolios, student, 46–48, 72–73
PPOHA grant (Title V Promoting Postbaccalaureate Opportunities for Hispanic Americans), 154, 157
Premier Community College, 106–107
AutoCAD program, 106
digital communication programs, 106–107
Drafting program, 106
medical field and, 110
oil, gas, and energy industries and, 107–110
Piping and Drafting program, 106
service area, 107–108
technical communication programs, 105–106
Preprofessional status of technical communicators, 191–192
Problem-solving for program administrators, 135–146
 complexity of, 133–134
 creative, 133, 141, 143
decisive and reasonable problem-solvers, 142
 emergent strategy, 135, 138–139, 141–142, 145
 overview, 133–135
[Problem-solving for program administrators]
 participatory approach to, 134–135, 144–146
 solution-first techniques, 142, 144–145
 stakeholders, involvement of, 134–136, 139, 142, 144–146
 user-centered design principles, 134, 144–147
 user-centeredness, 136
 work-oriented design, 134
See also CCLI (Center for Computer-Assisted Language Instruction), Michigan Technological University
Procedural knowledge, 83, 91, 94
Production and making, 58
Professional, technical, and scientific communication (PTSC)
 conceptual foundations of, 2
 forces affecting field of, 11
 issues in, 1–2, 201–206
 productive habits of mind, development of, 18–21
 scholarship on, 2–3, 204–205
 trends in, 12–16
See also Technical and professional communication (TPC); Technical communication (TC)
Professional, Technical, and Scientific Writing standard occupational code, 31
Professionalization of field, 31–32, 54, 73
Professional organizations international, 25
 outcome statements and, 74
See also CPTSC (Council for Programs in Technical and Scientific Communication); STC (Society for Technical Communication)
Program assessment, 3, 206
 cluster scoring, 42–43
 conceptual framework, 45
 core competencies, 46, 48–49
 faculty reluctance for, 39, 47
 learning effectiveness, 45–46
 Likert-scale rubric, 47
 literature of, 42
multiple-choice tests, 40–41
outcomes-based assessment, 48–49
pedagogy, socially constructed models of, 42–43
scholarship on, 40
Texas A&M Commerce, North East
Texas Writing Project and, 41
Texas Tech University and, 48
writing assessment, 39
See also New Jersey Institute of Technology (NJIT), program assessment
Programmatic Perspectives (CPTSC), 3, 202
Prosocial power, 99–101, 103
Public universities, 25–26
Purdue University, 157
Raju, Ritu, 6, 105, 206
Ramey, J. A., 205
Recursive design practices, employment of, 19–20
Redden, Elizabeth, 120
Redish, J. C., 205
Reflective practice, 13–14, 16, 85, 91, 138
Relationships and program building, 81
9/11, 89
academic language, 91–92
clinical moments, 82–90
collaboration, 92–94
confessional tales, 93
consultant and researcher, dual role of, 85–88
ductile anchors, 87
ethics, 83–84, 86, 91
ethnography, 92
Howe Writing Initiative, 85n9
“interest,” 87–88
narrative methodology, 81–83, 85, 91–92
participant-observers, 85–86
phronesis, 82–83, 91, 93
procedural knowledge, 83, 91, 94
reflective practitioners, 85, 91
rhetorical narrative, 93
“Responding, Assessing, Grading: How to Provide Useful Feedback to Student Writing” (UCF workshop), 167
Responsibility-based budgeting (RBB), 27–28, 30
Responsibility-Centered Management (RCM), 27
Rhodes, K., 58
Rich, Anne, 125, 179–180
Riordan, Dan, 5, 11, 202
Rivers, W. E., 204
Roochnik, D., 58
RPW (Rhetoric and Professional Writing). See University of Cincinnati, Rhetoric and Professional Writing (RPW) track
Russell, D., 163, 165
Salvo, Michael, 121n3
Sapp, David, 69
Sashkin, M., 99
Sashkin, M. G., 99
Scarpa, F., 24
Scholarship
on program assessment, 40
on technical communication, 2–3, 204–205
Scholarship of Teaching and Learning
movement, 12
Schön, D. A., 85, 133–134
Science, Technology Engineering, and
Math (STEM) graduate curricula, 150
Scott, Tony, 190–191
Search committees for technical writing
positions, 32–33
Selber, Stuart, 5, 11, 18–19, 45, 202
Selfe, Cynthia and Richard, 135–136, 139–140, 142
Service courses, 89–90, 190–191
Situated learning, 70–71
Skills, real-world. See under Business
and industry
Smith, Erin, 144–146
Social networking, role of professional
writer/editor and, 22
Software programs, instruction in, 20, 189–190
Solution-first problem-solving techniques, 142, 144–145
Souther, J. W., 205
Specialized courses, 186
Spring, Joel, 117n1
Stakeholders, 72–73
academic, 2–3
involvement in problem-solving, 134–136, 139, 142, 144–146
Standardized testing, 40–41
Standards, distinction between outcomes
and, 60–61
Starke-Meyerring, Doreen, 24, 119, 122, 128–129
STC (Society for Technical Communication), vii
academic database, 105
Body of Knowledge initiative, 32
certification of technical writers or
communicators, 32
focus groups, 108
globalization and, 25
[STC (Society for Technical Communication)]
Metrolina Chapter, 101
professionalization of technical
communication, 31–32
student involvement in, 102–103
Stevenson, D., 185
Stories. See Narrative
Storytelling, importance of, 81–82
Study abroad programs, 23
Sullivan, Dale, 129
Sunstein, Bonnie, 86, 93n20
Tact of Teaching, The (van Manen), 88n16
Tagg, John, 15
Takeuchi, H., 40
TCEurope, 25
TC-WPA Outcomes Statement, 55, 59–61
Collaborative Learning, 62
discussion of, 63–64, 73
Knowledge of Conventions and
Genres, 62
Practices and Processes, 62
Research (Critical Thinking, Reading,
and Writing), 61
Technology, 62–63
text of, 61–63
Teachers and researchers, 84–88, 90–91
Teaching
large classes, 165–167
“learning, first, writing second” model, 166
Teaching and learning, social and inter-
active aspects, 93–94
Teaching Technical Communication
(Dubinsky), 14
Technē, 61, 63, 73, 82–83, 83n6, 93–94
as enterprise, 55–59
Technical and professional
communication (TPC)
undergraduate degrees in, 179–186
See also Professional, technical, and
scientific communication (PTSC);
Technical communication (TC)
Technical Communication Quarterly (TCQ), 3, 57–58
Technical communication (TC)
definitions of, 55–57
flexibility in, 56–57
preprofessional status, 191–192
programs in 2-year colleges, 105–116
programs in 4-year colleges, 105, 111
resources for program directors, 2–3
translation, merging with, 24–25
value of, 55–57
See also Professional, technical, and scientific communication (PTSC); Technical and professional communication (TPC)

Technical communicator, as occupation, 31

Technical/Professional Writing Exhibit of Student Work (UNC Charlotte), 101

Technical rationality, 85

Technical writing
creativity in, 101
as occupation, 31
prerequisites for, 115

Technical Writing: Theory and Practice (Fearing & Sparrow), 3

Techniotes, 82, 91, 93–94

Technological classrooms, 84n8, 88

Technological literacy, 189
guidelines on, 67

Technology, 16–21
articulation of sociotechnical forces, 17–18
courses, 189
definitions of, 17–18
design biases of, 17–18
management, 206
role of, 188–190
skills for learning, 63–64, 67
writing tasks and, 20

Telecourses, 43

Texas A&M Commerce, North East Texas Writing Project and, 41

Texas Tech University (TTU), 4
faculty, grant-seeking abilities of, 33

[Texas Tech University (TTU)]
Master of Arts in Technical Communication (MATC), assessment strategies, 48
usability labs, 30
Texas Two-Step Project (Technology Workforce Opportunities through Seamless Transitions and Educational Partnerships), 114

Transaction leaders, 99–104
Transfer students, 162
Transformational leaders, 99–104
Translation and technical communication field, 24–25
“Trends in Scientific and Technical Communication Programs” (Harner & Rich), 125

Tutors, embedded, 164, 173–174

UCF (University of Central Florida)
WAC program, 161–176
Chemistry faculty, 169–170
consultant model, 165, 170, 175–176
department-centered model, 167–170, 175
Department of Writing and Rhetoric, 173
disciplinary differences in writing, 170–171
Facebook page, 172
Faculty Center for Teaching and Learning (FCTL), 174
financial support, 175
First Year Composition, 173
History faculty and students, 164–165, 169, 173
Information Fluency Program, 174
initial steps, 164–167
institutional context, 162
Knights Write, 173
large classes, teaching of writing in, 165–167
“learning, first, writing second” model, 166
learning-to-write assignments, 167
Nursing faculty and students, 164–165, 169, 173
[WAC/WID (writing across the curriculum/ writing in the disciplines)]
writing, importance of, 175
See also UCF (University of Central Florida) WAC program
Wardle, Elizabeth, 164
Watson, Robert, 26
Websites, organizational, 171–172, 176
Wenger, Etienne, 57, 70, 72
“What’s Practical About Technical Writing?” (Miller), 129
Whitburn, M. D., 203
White, Edward M., 39, 55
Whitman, Walt, 87
Wick, Corey, 56
Wiebe, E. N., 163
Wieman, Carl, 14
Williamson, Bill, 1, 201
Wilson, M., 24, 119
Woodruff, Paul, 90
Workforce Education Course Manual, 112
Workforce programs, 105–106, 112, 114–115
Work-oriented design, 134
Workplace. See Business and industry

WPA Outcomes Statement, 53, 63
purpose of, 54–55, 59
success of, 74
Writing and technology, research on, 84–88
Writing assessment, 39
Writing Program Administration: Journal of the Council of Writing Program Administration, 2
Writing Program Administration (WPA), North and South Carolina affiliates, 103
Writing program administrators (WPAs), 2
Writing-related student learning outcomes, 168–170, 176
Writing-to-learn, 167

Yancey, Kathleen Blake, 46, 60, 68–69, 73
YMCA at Virginia Tech, 89–91, 94

Zemliansky, Pavel, 7, 161, 206
IN PRAISE OF…

Bridgeford, Kitalong, and Williamson and the 15 contributors to Sharing Our Intellectual Traces have given a most precious gift, a gift of stories that offers the field of technical, professional, and scientific communication (TPSC) a narrative history from those who know the field from the inside out: program administrators. Well conceived and expertly produced, this collection provides novice program administrators with a rich array of stories to draw upon as they tangle with the world of program development. For the experienced administrator, this book gives breaths of fresh air to invigorate your spirit. Sharing Our Intellectual Traces is a must read for all TPSC faculty and graduate students. It is also a gift that should be wrapped with a blue ribbon and presented to deans and provosts.

— Robert R. Johnson
Michigan Technological University
Author, User-Centered Technology and Romancing the Atom

Whether a graduate student entering the field of technical communication, an assistant professor given an administrative responsibility in a technical writing program, an advanced professor with interests in the rhetoric, history, and administration of technical communication, or a dean of a college in which such a program resides, the reader will learn much from the stories told in Sharing Our Intellectual Traces. Here we encounter stories related to designing assessment plans, developing new programs, reshaping existing programs, establishing interdisciplinary relationships, and learning to be effective researchers and leaders. The reader experiences the struggles, frustrations, and rewards shared by these writers, most of whom are or have been administrators of technical communication programs. These stories give us a glimpse into current issues and concerns, such as globalization, critical awareness, and the appropriate use of technology. We find in these pages a profile of a discipline that, we may safely say, has emerged from adolescence and become a mature field of practice with a rich heritage of experience.

— Dale L. Sullivan
Professor of English
North Dakota State University

ABOUT THE EDITORS

Tracy Bridgeford is an associate professor of Technical Communication at the University of Nebraska at Omaha, where she also directs the Technical Communication program and the English master’s program. She contributed a chapter to Resources in Technical Communication: Outcomes and Approaches; Teaching Writing with Computers: An Introduction; and Innovative Approaches to Teaching Technical Communication, which she also coedited. She has also published in Kairos: A Journal of Rhetoric, Technology, and Pedagogy. She coedited a special issue of Technical Communication Quarterly on Technē (2002). She is coeditor of Programmatic Perspectives, the journal of the Council for Program in Technical and Scientific Communication, and serves on the organization’s executive committee as information officer.

Karla Saari Kitalong is an associate professor of Humanities and director of Composition and interim director of the Multiliteracies Center at Michigan Technological University. Her research interests include visual rhetoric and usability in technical communication, especially concerning new media contexts; multimodal composition pedagogy; writing program administration; and writing in the disciplines.

Bill Williamson is a professor of Professional and Technical Writing at Saginaw Valley State University (SVSU). He has administered undergraduate technical writing programs at two institutions—SVSU and the University of Northern Iowa. He has served the Council of Programs in Technical and Scientific Communication as coeditor of Programmatic Perspectives, the organization’s journal, as information officer, and as president. His research interests include program administration, technical communication curriculum design, and technical communication pedagogy.